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Abstract

Even state-of-the-art neural approaches to
handwriting recognition struggle when the
handwriting is on ruled paper. We thus
explore CNN-based methods to remove
ruled lines and at the same time retain the
parts of the writing overlapping with the
ruled line. For that purpose, we devise a
method to create a large synthetic dataset
for training and evaluation of our mod-
els. We show that our best model vari-
ants are capable of reconstructing charac-
ters that are overlapping with the line to be
removed, which is a problem that simpler
approaches often fail to solve. On a dataset
of children handwriting, we show that re-
moving the ruled lines improves charac-
ter recognition. We made our synthetic
dataset and all experimental code available
to foster further research in this area.

1 Introduction

A frequently addressed issue in handwriting
recognition (HWR) is the recognition itself, al-
though it is preceeded by many steps such as
word- or line-level segmentation. In addition, con-
trast enhancement, noise removal or struck-out
word detection can further improve the recogni-
tion performance. The main goal of these prepro-
cessing steps is to separate the handwritten text
referred to as foreground from the background in
the best possible way. Focusing on HWR in the
educational domain, handwritten texts challenge
this separation as printed forms (exams, school
workbooks, writing pads, ...) where ruled lines
help guiding the orientation and size of writing are
commonly used. Although in most cases only a
single ruled line is used, especially younger chil-
dren use paper with several lines (see Figure 1).

Figure 1: The word ‘challenge’ from the IAM
dataset with 4 ruled lines, 2 ruled lines and one
ruled line.

Furthermore, in textual answers of exams, ruled
lines still exist to indicate that a textual answer
must be given.

Ruled lines pose a challenge for several lev-
els of HWR. First, for word-segmentation, where
the ruled lines cause a problem as they connect
multiple words together making it harder to deter-
mine the beginning and end of a word. Second, as
character recognition has to interpret stroke-based
structures into characters it additionally have to
deal with a ruled line, which is sometimes very
dominant. The removal process of ruled lines
faces the challenge of the retention of character-
pixels, while pixels from the ruled line shall be
removed. We address this challenge in our work
using a neural network.

Although neural networks have recently been
successfully used for a variety of image process-
ing tasks, their use for ruled line removal has - to
the best of our knowledge - not yet been explored.
In this paper, we therefore propose a simple and
effective convolutional neural network for line re-
moval while retaining handwritten characters and
brightness. Furthermore, the proposed model re-
creates the shape of characters which align along
the ruled line. For training and evaluation, we first
create a synthetic dataset which can be adapted to
any use case (e.g. number of ruled lines).
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2 Related Work

Removing ruled lines with standard image pro-
cessing algorithms usually follows three stages:
detection, removal, and text enhancement (Refaey,
2015). In the detection stage, the ruled lines are
extracted from the background and handwritten
text. At the removal stage, the ruled lines are
set to background color. In the text enhancement
stage, the characters are usually re-connected and
background noise is revised. Two stage solutions
use connected component analysis during the re-
moval stage to distinguish between ruled line pix-
els and text pixels and thus already perform the
re-connection. An enhancement stage would then
only remove noisy leftovers.

Rani and Vasudev use a canny filtering for the
detection stage and a local intensity of black pix-
els with a morphological above-threshold filtering
for the detection of connected components. The
enhancement stage deals with the removal of dot-
ted and broken lines and clearing of noise.

The method proposed by Refaey (Refaey, 2014,
2015), use a windowed Hough-Transformation at
the detection stage. The removal stage includes an
intensity histogram (hue) with a local entropy to
detect the connected components. A subsequent
morphological operation enhances the text isola-
tion from the background.

Imtiaz et al. make use of prior knowledge (e.g.
average width of characters) and determined pa-
rameters such as the total number of characters
and the total number of lines. With these deter-
mined, the detection and removal stage use struc-
turing filters and merging (AND, OR and subtrac-
tion) of these results. At the text enhancement
stage, the local entropy is calculated to re-connect
disconnected characters. Finally, the noise is re-
moved with a median filter.

In (Chen and Lopresti, 2014), the authors
present a linear regression model which is capa-
ble of detecting ruled lines and especially dealing
with broken lines. However, they do not propose
a removal method after detection. Some classi-
cal approaches, e.g. (Imtiaz et al., 2014) and (Re-
faey, 2014), are dependant on predefined parame-
ters (e.g. the average width of a character) or on
the page layout. All classical approaches cannot
deal with characters that overlay ruled lines (see
example in Figure 7). Thus, in this paper we lever-
age the power of neural networks to tackle the task
of ruled line removal.

3 Synthetic Dataset Creation

To our knowledge, no freely available dataset con-
taining ruled lines documents with and without the
ruled line are published.1 Thus, we create a syn-
thetic dataset where ruled lines are generated and
placed into sequences of concatenated handwritten
word images, as shown in Figure 3. The resulting
dataset contains two version of text images with
and without ruled lines.

3.1 Word Concatenation

The word images for the dataset were taken from
IAM (Marti and Bunke, 2002). These word im-
ages come from various writers written without
any constraints on size, alignment or pen type.
Therefore, to create a realistic text line, we need to
align these word images vertically along a virtual
bottom body line. The virtual lines can be seen in
Figure 2. We categorize words into bottom, top,
body or full (all) according to the characters’ ex-
tension within each word. The characters which
use the space below the bottom body line are: [f,
g, j, p, q, y]. Characters using the top space are
all upper case characters as well as [b, d, f, h, i,
k, l, t]. The word images can then be vertically
arranged according to their category (e.g. bottom
categorized words will be aligned at the bottom,
while body words will be aligned onto the bottom
body line).

Some parameters, e.g. the number of text lines
per page or the number of words per text line, are
varied. However, for a consistent layout across
the page, we assign a random base value to some
parameters (e.g. constant base gap between text
lines). Each time such a parameter is used, the pa-
rameter will then be varied slightly from this base
value.

3.2 Adding Ruled Lines

Simultaneously to the word concatenation, a copy
of the image with inserted ruled lines will be cre-
ated. While keeping the page layout consistent, we
create pages with one, two or four ruled lines each
text line (see Figure 1). To further diversify our
training data, we decided to add another type in
which we place one ruled line somewhere over the
handwritten text line. To make the inserted ruled
lines even more realistic, we randomly add several
defects. These include noise, differing grey level,

1A potentially useful dataset (Kumar and Doermann,
2011) was not available under the published URL.
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Figure 2: The word ‘challenge’ from the IAM dataset divided into a top, body and bottom part. The
word is categorized as full as its characters span across all 3 parts.

small rotation as well as other techniques. An ex-
ample of a final version with and without one ruled
line each text line can be found in Figure 3.

In summary, our proposed method is capable
of generating unlimited training images while the
specific configuration of lines (e.g. number of
lines, line thickness, line length, or adding verti-
cal lines) can be adapted to the requirements of the
task. Despite the benefits of this synthetic dataset,
we want to note that models solely trained on syn-
thetic data always perform worse on real data. For
our dataset, we did not specialize on one particular
use case only, but rather aim at a widely applicable
model by using a variety of line types.

4 Proposed Architectures

To remove ruled lines, we experiment with two
modeling strategies: First, a straightforward all
convolutional model and second, an autoencoder
model. We explore several setups with different
hyperparameters of each model to further increase
the performance. As a simple baseline, we im-
plement a naive morphological method based on
conventional image processing.

4.1 Morphological Baseline

With our morphological filter approach we de-
tect line pixels and set them to white (background
color). First, the input is thresholded with Otsu
(Otsu, 1979) and followed by an opening and
closing morphological filtering with a rectangular
(horizontal) structuring element. Thus, we retrieve
the ruled lines as white areas which can be ex-
tracted with object detection while filtering small
areas out. Afterwards, all pixels within the objects
are set to the background color, including pixels
which intersect with character strokes. With this
approach, we can analyze whether the recognition
performance decreases if the character shape is not
restored after removing the line.

4.2 ALL-CNN
As described in Section 2, earlier, ruled line re-
moval has so far been done using regular image
processing techniques, similar to the morpholog-
ical approach. One basic technique is to apply
rectangular filters on the image (e.g. opening and
closing). In neural networks, convolutional layers
(conv) can be seen as filters, although the filter val-
ues are trainable parameters. Instead of applying
filters consecutively, several filters are trained in
parallel, together with a bias value.

Our model consists of only three conv layers
and thus we name our model ALL-CNN follow-
ing (Springenberg et al., 2014). We set the filter
dimension of the first layer to 21x21 followed by
two layers of dimension 3x3 each. By choosing a
rather large filter dimension at the first layer, the
network can gather more information around the
centered line pixel. Therefore, the network is able
to recognize dependencies of other character pix-
els around the ruled line (e.g. above and below)
and thus to retain the shape of the characters. The
number of filters is 32, which is later on varied (see
Section 4.4). Additionally, we apply LeakyRelu
(Xu et al., 2015) and Batch-Normalization (Ioffe
and Szegedy, 2015) after each conv layer. An ex-
emplary architecture of ALL-CNN can be seen in
Figure 4.

4.3 Autoencoder
Inspired by the various fields of application of
autoencoders (Hinton and Salakhutdinov, 2006)
such as cleaning (Yin, 2019) and denoising
Yasenko et al., we decided to test a CNN-based
autoencoder architecture for the removal of ruled
lines. The idea is to have an encoder at the begin-
ning of the bottleneck and a decoding afterward,
while filtering out the ruled lines in the taper.

The basic architecture consists of 5 conv layers.
A downsampling is applied after the second conv
layer and an upsampling after another conv layer
(see Figure 5). The number of filters and their di-



pre
pri

nt

(a) Text Lines

(b) Text Lines With Ruled Lines

Figure 3: An example page of the synthetic dataset displaying the text setting (a) and the ruled line
placement (b).

mension of the first conv layer remain identical to
the ALL-CNN model, as the purpose of the first
layer remains the same. The remaining conv lay-
ers keep the number of filters, but the filter dimen-
sion is decreased to 5x5 (conv2) and 3x3 (conv3-
5).

4.4 Hyperparameters

We experimented with several model parameters.
DNF - Decay of Number of Filters Initially, we

weight all conv layers alike and thus assign the
same number of filters, a setup which we denote
with SNF (Same-Number-of-Filters). We believe
that the large filter (21x21) at the beginning will
have the most influence for finding the ruled lines
and the connection between characters intersect-
ing the ruled line. We assume, that too many fil-
ters afterwards would only hold redundant infor-
mation. Thus, we decay the number of filters af-
ter the first conv layer by cutting the number in
half starting with 32 filters at conv layer 1, 16 at
layer 2 and 8 for layer 3. This setup is called DNF
(Decay-Number-of-Filters) and is only applied on
the ALL-CNN model.

Subtraction In our first results of the basic mod-
els (Autoencoder and ALL-CNN), both predicted
results were darker than the input images pre-
sented.2 We assumed that this is due to the fact

2Although the contrast in visualization might differ, we
want to note that it can be seen in Figure 6.

that the deeper the network was, the less informa-
tion was still present from the input image. Fur-
thermore, all pixels are influenced by the network
although only the pixels of the ruled line should be
affected. As only a few pixels must be changed,
we referred to image processing techniques where
only areas of attention (masks) are changed. We
decided to use the output of the network to func-
tion as such a mask by subtracting the former out-
put from the input layer and thereby present the
input layer anew at the end of the network (see
Figure 4).

Rectangular Filter Shape While we use the
conv layers with a quadratic filter dimensions, the
line to be reduced is of vertical shape. Thus, we
adapt the filter dimension of 21x9 (width x height)
which we denotes as RectFilter. While the ruled
lines are horizontal, the shape of the characters
crossing the ruled line [f, g, j, p, q, y] are rect-
angular with the longer side on the vertical axis.
Therefore, we transpose the dimensions 9x21 as
RectFilter Transpose.

5 Evaluation Setup

We describe how we evaluate results on synthetic
data pixel-wise and on real data using CER as a
derived extrinsic metric.
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Figure 4: Our proposed ALL-CNN (a variant with rectangle 21x9 filter) network with 3 conv layers,
subtraction and with a Rectangular Filter (see Section 4.4). The Batch-Normalization and LeakyRelu
after each conv layer are not visualized.

5.1 Synthetic Dataset

Although the synthetic data pages are created
as full pages, they are divided into tiles of size
512x512 pixels. We choose this size as a tradeoff
between computation costs while covering several
(∼5) text lines. Furthermore, due to the varying
number of text lines and varying text height, white
tiles are common at the bottom of the page and
thus are not ignored. We analyze the performance
of our models on 100 synthetic images.

Evaluation Metric for Synthetic Data With the
synthetic dataset created, a pixel-wise evaluation
can be performed. First, we calculate the root
mean squared error (RMSE), which compares the
delta pixel-wise and eliminates negative values by
squaring. 3 Furthermore, we compute the delta be-
tween the predicted gray value (after the removal
process) and the target gray value. Additionally,
we assume that small deviations from the target
value will not influence the handwriting recogni-
tion and thus set up a gray value threshold of ±

3It shall benoted that the RMSE is also used for the loss
function during training.

5. In this way, we can differentiate between three
cases: no deviations, small deviations, and devia-
tions of a greater extent.

5.2 Real Dataset

To test our methods on a use-case, children’s hand-
writings are a particularly good example as they
mainly include ruled lines. We decided to use the
FD-LEX dataset (Becker-Mrotzek and Grabowski,
2018) due to its clear structure (white pages with
ruled lines) and availability. The dataset comprises
freely-written texts with about 370,000 words
from 938 learners in the 5th (age 9-11) and 9th
(age 14-16) grade from the German school system
written in German. For demonstration purposes,
we took the first 50 pages of the set GYM 5.1
which are written from children of the 5th grade.
In total, we consider 522 text lines. Unfortunately,
the transcribed text was spellchecked. Thus, we
had to manually transcribe the texts again.

Evaluation Metric for Real Data As the FD-
LEX dataset does not provide a ground truth for
ruled line removal, the RMSE metric as used be-
fore is not applicable. Thus, we follow Cao et al.
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Figure 5: Proposed CNN Autoencoder architecture with 5 convolutional layers.

and use an object-level metric, the recognition
rate, as an extrinsic evaluation across all models,
which makes it necessary to implement a recog-
nizer. Although Cao et al. use the word error rate,
we use the character error rate (CER) as calcu-
lated with the edit distance. The CER can be seen
as the inverse character accuracy, more precisely,
the percentage of incorrectly predicted characters
compared to the ground truth text. This way, we
are able to analyze mispredicted characters in a
more fine-grained way, especially those intersect-
ing with the ruled lines.

Handwriting Recognizer We use a straightfor-
ward text line handwriting recognizer with a CNN
architecture and a Connectionist Temporal Clas-
sification (CTC (Graves et al., 2006)) at the end.
The model is trained using the text line images
from the IAM dataset while taking the split as
defined in “Large Writer Independent Text Line
Recognition Task”4 for training, evaluation, and
testing. It should be noted that we chose not to
use a language model as it would correct spelling
errors.

The handwriting recognizer requires a text line
segmentation as a preprocessing step. We use a
straightforward segmentation with the l A∗ path
finding algorithm. Afterwards, we receive a pixel-
wise mask of the individual text lines. As this seg-
mentation process should not influence the recog-
nition performance across all models, we apply the

4http://www.fki.inf.unibe.ch/
databases/iam-handwriting-database

segmentation on one of the visually best methods
(ALL-CNN with Subtraction) and transfer the seg-
mentation masks to all other methods. In this way,
we always segment the same part of the images,
while having the individual results from the ruled
line removal methods. After training, the hand-
writing recognizer has a CER of 11.52% on the
IAM test set.5

6 Results & Discussion

Table 1 shows the results of our experiments. The
character error rate (CER) on the real handwriting
data with ruled lines is rather high (see the next
subsection for an analysis of the reasons). How-
ever, as we hypothesized, removing ruled lines has
a massive effect on recognition performance. Al-
ready the baseline removal method reduces CER
from 66.3 to 35.4. Our neural models decrease
CER even more. The best autoencoder version
yields 31.1 while the best All-CNN models yields
28.5 which is a 6.9 percent point improvement
over the baseline.

From those numbers alone it is hard to further
analyze the individual performance of model vari-
ants. We thus now have a look at the synthetic test
data where we know the true gold standard with-
out the ruled lines and can perform a pixel-wise
scoring.

5Note that CER values for the IAM dataset are typically
computed per word, while we tackle the much harder task of
recognizing whole lines. However, as we are only interested
in the relative impact of ruled line removal, the performance
of our recognizer is sufficient.

http://www.fki.inf.unibe.ch/databases/iam-handwriting-database
http://www.fki.inf.unibe.ch/databases/iam-handwriting-database
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Figure 6: Exemplary results of the first text line from the real dataset. (a) Original (b) Morphological
Baseline, (c) Autoencoder and (d) ALL-CNN

Our Morphological method has an RMSE of 6.6
on the synthetic data. This denotes that on aver-
age, every pixel differs by 6.6 gray values from the
ground truth. In addition, only 2.3% of all pixels
were changed and 1.8% of these were above the
threshold. This shows that those 1.8% have a big-
ger distance (e.g. a pixel that should be black was
incorrectly changed to white) as they are able to
increase the RMSE above the threshold of 5. The
CER on the children’s data is worse compared to
our other methods but better than the original im-
ages. This proves our assumption that roughly re-
moving the ruled lines increases the recognition
performance. As this approach was naive - since
only relevant pixels were changed - we use this as
the baseline.

The best Autoencoder setup can reduce the
RMSE value to 6.3. In general, however, the
resulting images from the Autoencoder change
nearly all pixels (above 92%). Furthermore, about
one third of all pixels in the image have a differ-
ence above the threshold.

The best ALL-CNN architecture achieves the
closest image in terms of the RMSE with only
2.6%. Although the amount of changed pixels is
high, the amount of pixels exceeding the threshold
is low with approx. 2-5%. This - together with
the small RMSE - indicates that the delta is small
contrary to the Baseline result where a few pix-
els increased the RMSE. In our results, the rather
basic architecture with only 3 conv layers and the
renunciation of down and up sampling resulted in

our best recognition performance with a CER of
28.5% beating baseline by about 7 percent points.
This is a strong result, as CER performance is
also influenced by other factors (e.g. crossed-out
words, tally marks) and our method focuses on
ruled lines only.

6.1 CER Performance Level

While ruled line removal is able to improve recog-
nition quality, the CER is still rather high. We
now discuss some factors that additionally influ-
ence the results.

A major limitation is that training and applica-
tion dataset do not match well (but there are not
other datasets available). In particular, IAM texts
were written by native English adults, while the
FD-LEX texts were written by German children.
Therefore, this is already an influence of two fac-
tors: the delta between adults and children, and be-
tween English and German. The latter might cause
a bigger issue for the recognizer than is visible at
first sight. One difference is the alphabet between
German and English. The umlauts ä, ö, ü and the
special character ß are not existing in English and
thus are not present in the training data. To ad-
dress this issue partly, we replaced those umlauts
with a, o, u and s, respectively, in the ground truth
text (including their upper-case variants).

Another, not so obvious gap arose from the dif-
ferent character bi-gram distributions which are
learnt from the recognizer due to its temporal
structure. For instance, ‘th’ is the most common
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Table 1: Performance of all models on synthetic data with RMSE, amount of pixels which were changed
!=0, amount of pixels with a greater difference then the threshold and on real data FD-LEX with CER.

Synthetic Real

Error
RMSE ̸=0 > ±5 CER

Original - - - 66.3
Morphological Baseline 6.6 2.3 1.8 35.4

Autoencoder

SNF 6.6 94.5 38.1 31.1
SNF Subtraction 17.0 92.9 7.5 65.9
SNF RectFilter 6.3 93.3 32.5 39.2
SNF Subtraction RectFilter 11.1 92.8 19.4 55.4
SNF RectFilter Transpose 6.7 93.8 36.7 31.3
SNF Subtraction RectFilter Transpose 10.9 92.1 20.3 54.9

All-CNN

DNF 2L 4.7 85.6 5.6 32.3
DNF 3L 4.5 84.9 6.0 31.8
DNF 3L Subtraction 3.6 71.7 2.4 31.0
SNF 2L 4.0 72.8 5.8 30.1
SNF 3L 4.1 80.7 5.1 31.7
SNF 3L Subtration 2.6 47.4 2.4 28.5
SNF 3L RectFilter 3.6 68.0 4.6 33.8
SNF 3L Subtraction RectFilter 2.9 63.5 3.4 29.4
SNF 3L Subtraction RectFilter Transpose 3.0 44.5 1.9 29.5

bi-gram amongst English words whereas in Ger-
man it is ‘er’ or ‘en’.6 In particular, frequencies of
double consonants differ between both languages,
too. As another difference, in German, three re-
peated consonants like ‘Schifffahrt’ (naut. ‘ship-
ping’) exist. Therefore, the recognizer is biased
towards an English dataset.

A further negative influence on the recognizer
is, that tally marks are used in some of the FD-
LEX images after every 10 words. Those are pred-
icated as |, ( or ) most of the times. Unfortunately,
the prediction of these vertical lines can some-
times influence neighboring characters (e.g. a| =
d), too. This makes it difficult to filter these errors
out or change the ground truth data to |.

Crossed-out words are another influencing fac-
tor as they are represented by a # sign in the tran-
scription but can be interpreted by the recognizer
as several characters leading to many errors. This
further decreases the performance as children are
presumably more likely to cross-out words. Ulti-
mately, we decided to ignore all these issues as we
focus on the ruled line removal itself. Therefore,
we analyze the model performances with different
metrics by looking at the improvement in relative
performance rather than the overall performance.

Furthermore, some digitalization artefacts (e.g.
6https://www.staff.uni-mainz.de/

pommeren/Cryptology/Classic/8_Transpos/
BigramsE1.html and *BigramsD1.html

gray border from the page during scanning) addi-
tionally decrease the performance.

6.2 Hyperparameters
SNF vs. DNF Our hypothesis was that too many
filters at the latter layers would only hold redun-
dant information and thus do not influence the
recognition performance. As the DNF version is
always worse than the SNF version with all other
parameters held equal, we can conclude that in the
deeper layers, the amount of filters plays an im-
portant role.

Subtraction For the ALL-CNN model, adding
subtraction was a crucial step that decreased CER
by 3 percent points. Subtraction is only beneficial
for ALL-CNN, while it strongly decreases perfor-
mance of the Autoencoder models.

Rectangular Filter Focusing on the recognition
results, neither the horizontal nor vertical rectan-
gular filter shape resulted in an improvement com-
pared to the quadratic shape. Only for one model
using a rectangular shape came close to beat the
best performance on the autoencoder models.

6.3 Remodeling of Overlapping Characters
A special problem for earlier approaches are char-
acters overlapping with ruled lines as those can-
not be reconstructed with filtering. In Figure 7,
the character ‘e’ of the word ‘modified’ is cov-
ered with a ruled line. Although the bottom stroke

https://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/BigramsE1.html
https://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/BigramsE1.html
https://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/8_Transpos/BigramsE1.html
*BigramsD1.html
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(a) ruled line (b) original (c) predicted

Figure 7: Image segment as example of the model
(best performing All-CNN variant) capability to
remodel the letter ‘e’ as the bottom stroke over-
laps with the ruled line.

of the character ‘e’ overlaps with the ruled line,
the CNN model was able to recreate the stroke
partly (shorter in length). We assume, that this
was possible due to the darkness information still
being present in the ruled line as both, the char-
acter strokes’ darkness and those of the ruled line
interfere with each other. As these images were
taken from the synthetic dataset and thus can’t be
tested on real data due to the loss of a real ground
truth, we assume that our model should be capable
to remodel characters likewise, if the darkness in
the intersection area is superimposed.

6.4 Prediction of Characters with
Restoration

We assumed that the Baseline approach would
lead the recognizer to mispredict bottom charac-
ters as body characters as those characters cross
the ruled line and are thus cut in half when the
line is removed. E.g. ‘g’ would be predicted as
‘a’ or ‘o’ and a ‘y’ as ‘u’ or ‘v’. Hence, we an-
alyzed the misprediction of those bottom charac-
ters by using the Levenshtein Library7 and return
all edit operations necessary to transform the pre-
dicted text line into the ground truth. The numbers
in Table 2 correspond to the frequency of the oper-
ations ‘equal’ (correctly predicted characters) and
‘replace’ (incorrectly predicted characters). We do
not consider ‘insert’ and ‘delete’ operations in this
analysis.8 However, using these numbers across
all models makes them comparable again and at
least indicate trends which can be seen in Table 2.

For instance, ‘g’ was incorrectly predicted as
an ‘s’, ‘a’ or ‘e’ in 8.5% for the Baseline method
while for the Autoencoder and ALL-CNN the rec-

7https://pypi.org/project/
python-Levenshtein/

8For example, a ‘y’ could be recognized as ‘ii’ with two
characters instead of one, which would lead to a ‘replace’ and
‘delete’ operation. However, the ‘delete’ operation could be
assigned to the next character in the ground truth string and
thus makes it invisible for us to analyze.

ognizer mispredicted them as bottom characters
like ‘y’ or ‘q’, too. In general, the mispredicted
characters are identical across all models except
for the character ‘g’.

6.5 Limitations

Both models were trained to detect and remove
horizontal ruled lines. Unfortunately, some char-
acters e.g. ‘T’ are build of likewise horizontal lines
and thus are removed partly, too. Although these
errors occur, we were unable to find upper charac-
ters (further examples: ‘E’, ‘t’, ‘F’, ‘H’) being in-
correctly predicted due to this result. We thus cal-
culated the accuracy of correctly recognized up-
per characters (see Table 2).9 We can see, that the
recognition performance of upper characters in-
creased, in relation to the Baseline method, which
leaves those characters untouched.

Furthermore, as all models are trained on an
English dataset, we assume that the model will
perform worse on scripts like Arabic which align
strongly on ruled lines. For various reasons, it was
not possible for us to set our results in relation
to those procedures mentioned in Section 2. In
many cases, the datasets and code used in the ex-
periments were not freely available, whereas some
links to the datasets were offline and the authors
did not respond. For other approaches, the writ-
ing script (e.g. Arabic) differed too much. In addi-
tion, a large variety of different metrics were used,
which often related to characteristics of the line
(e.g. distance of lines, skew, position, ...), rather
than the accuracy of the removal.

7 Summary

We evaluated a dataset of children handwriting
and showed that ruled lines greatly affect character
recognition. To this end, we trained different CNN
models, namely an autoencoder and an ALL-CNN
model, to remove the ruled lines. To do this, we
created a flexible synthetic dataset in which we au-
tomatically place ruled lines onto handwritten text
lines. This dataset is then used to train and eval-
uate the models. Finally, we tested the models on
the children handwritings and showed that the er-
ror rate made by the recognizer was cut in half.
In addition, we varied hyperparameters to further
improve the model performance.

9We want to note, that again, only the operations ‘replace’
and ‘equal’ were considered from the Levensthein output and
thus the true value might differ.

https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
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Table 2: On the left: the accuracy of the predicted bottom characters and their three most common
mispredictions. ‘y’ is left out as it does not occur in the ground truth data and ‘q’ as it was not predicted
by all methods. On the right: the accuracy of the character classes upper, body, bottom.

‘f’ (247) ‘g’ (330) ‘j’ (330) ‘p’ (330) Accuracy in %
Model % pred % pred % pred % pred up. body bot.

Original

33.2 f 51.2 g 57.1 j 30.9 p 42 39 46
8.5 t 11.5 s 9.5 b 14.4 e
5.3 e 2.4 t 4.8 i 3.1 b
3.2 l 2.4 l 4.8 s 3.1 s

Morphological
Baseline

61.9 f 84.2 g 76.2 j 66.0 p 73 75 72
17.4 t 5.5 s 14.3 g 7.2 s

1.6 e 1.5 a 4.8 J 4.1 e
1.2 l 1.5 e - - 2.1 r

Autoencoder

67.2 f 88.8 g 76.2 j 82.5 p 80 75 71
13.4 t 2.7 s 9.5 g 3.1 e

2.8 l 1.2 y 4.8 o 2.1 r
2.0 e 0.9 a 4.8 F 1.0 f

ALL-CNN

72.1 f 90.0 g 71.4 j 87.6 p 83 80 74
11.7 t 1.8 s 14.3 g 2.1 o

1.6 l 0.9 y 4.8 f 1.0 k
1.6 e 0.9 q 4.8 o 1.0 j

In conclusion, we found that a 3-layer CNN
was already enough to solve the removal task.
When presenting the input image anew, we were
able to reduce the character error rate even further.
In comparison, a morphological approach, where
ruled lines where removed roughly, was outper-
formed by 7% by our best performing model (3
Layer ALL-CNN with subtraction) in terms of
CER. Not only was the model capable of retain-
ing the connections of characters intersecting with
the ruled line, the model was also able to recon-
struct strokes aligning with the ruled line. To fos-
ter further research, we make the model publicly
available.10

In future work, we want to extend our train-
ing set by using the cvl-database which includes
German words (Kleber et al., 2013). Being able
to remove ruled lines is a prerequisite for train-
ing handwriting recognition models for children
where almost all dataset have ruled lines. We plan
to train a German children handwriting recogni-
tion model based on the cleaned FD-LEX data.
However, children handwriting data remains chal-
lenging as it often contains other confounding fac-
tors like drawings, cross-outs, or tally marks.
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